16 research outputs found

    Adaptation of the Electric Machines Learning Process to the European Higher, Education Area

    Get PDF
    In this paper the basic lines of a complete teaching methodology that has been developed to adaptthe electric machines learning process to the European Higher Education Area (EHEA) arepresented. New teaching materials that are specific to Electric Machines have been created(textbooks, self-learning e-books, guidelines for achieving teamwork research, etc.). Working ingroups has been promoted, as well as problem solving and self-learning exercises, all of which areevaluated in a way that encourages students' participation. Finally, the students' learning process inthe lab has been improved by the development both of a new methodology to follow in the lab andnew workbenches with industrial machines that are easier to use and also enable the labexperiments to be automated. Finally, the first results obtained as a result of applying the proposedmethodology are presented

    Controlling the doubly fed induction generator based wind turbines during normal and disturbed grid voltage

    Full text link
    This work presents an improved strategy in the field of predictive control (PC) of the doubly fed induction generator (DFIG). The proposed strategy applies four voltage vector in every period in order to have constant switching frequency and low current THD. The appropriate voltage vectors in each period are recognized when the estimated duration times of selected active vectors are positive. The suggested techniques has excellent performance during transient and steady – state conditions. The proposed predictive control can easily flow the references under normal and abnormal voltage conditions even if the references contain ac terms. Without any additional controller, the proposed technique could obtain smooth stator active and reactive power or smooth electromagnetic torque or could inject sinusoidal and balance current into the grid when the voltage unbalance appears in the stator winding of DFIG. Moreover, under unbalanced voltage conditions, still four voltage vectors are applied in every switching period. The simulation studies for this technique are carried out for 2 MW DFIG in Matlab Simulink environment under ideal and unbalanced grid voltage. Furthermore, the experimental studies are now conducting. The results of this technique are compared to other strategies. The comparisons show that the performance of the proposed strategy is significantly superior to the other strategies

    State of the Art and Future Trends in Grid Codes Applicable to Isolated Electrical Systems

    Get PDF
    Electrical power systems are changing their traditional structure, which was based on a little number of large generating power plants placed at great distances from loads by new models that tend to split the big production nodes in many smaller ones. The set of small groups which are located close to consumers and provide safe and quality energy is called distributed generation (DG). The proximity of the sources to the loads reduces losses associated with transportation and increases overall system efficiency. DG also favors the inclusion of renewable energy sources in isolated electrical systems or remote microgrids, because they can be installed where the natural resource is located. In both cases, as weak grids unable to get help from other nearby networks, it is essential to ensure appropriate behavior of DG sources to guarantee power system safety and stability. The grid codes sets out the technical requirements to be fulfilled for the sources connected in these electrical networks. In technical literature it is rather easy to find and compare grid codes for interconnected electrical systems. However, the existing literature is incomplete and sparse regarding isolated electrical systems and this happens due to the difficulties inherent in the pursuit of codes. Some countries have developed their own legislation only for their island territory (as Spain or France), others apply the same set of rules as in mainland, another group of island countries have elaborated a complete grid code for all generating sources and some others lack specific regulation. This paper aims to make a complete review of the state of the art in grid codes applicable to isolated systems, setting the comparison between them and defining the guidelines predictably followed by the upcoming regulations in these particular systems

    Characterization of the Rotor Magnetic Field in a Brushless Doubly Fed Induction Machine.

    Get PDF
    The large increase in wind generation could improve the final development of wind systems with brushless doubly-fed induction machines (BDFIM) as an alternative to the doubly-fed asynchronous machines. For this reason, a detailed study of several aspects of the BDFIM design, as well as of its rotor configuration, is absolutely essential. In this paper, the authors present an alternative formulation of the BDFIM operating principle in synchronous mode. Besides the basic equation of the machine operation, it presents as main advantage the precise characterization of all the magnetic field components in a BDFIM with idealized stator windings and an idealized rotor cage. Based on this formulation, the paper provides a standard that may be used to compare the fields created by different real BDFIMs. This standard has been validated by laboratory tests

    Development of a grid connected micro wind generator. A practical activity for the course on electric generation with wind energy

    Get PDF
    This paper describes a practical activity, part of the renewable energy course where the students have to build their own complete wind generation system, including blades, PM-generator, power electronics and control. After connecting the system to the electric grid the system has been tested during real wind scenarios. The paper will describe the electric part of the work surface-mounted permanent magnet machine design criteria as well as the power electronics part for the power control and the grid connection. A Kalman filter is used for the voltage phase estimation and current commands obtained in order to control active and reactive power. The connection to the grid has been done and active and reactive power has been measured in the system

    Low Voltage Ride-through in DFIG Wind Generators by Controlling the Rotor Current without Crowbars

    Get PDF
    Among all the different types of electric wind generators, those that are based on doubly fed induction generators, or DFIG technology, are the most vulnerable to grid faults such as voltage sags. This paper proposes a new control strategy for this type of wind generator, that allows these devices to withstand the effects of a voltage sag while following the new requirements imposed by grid operators. This new control strategy makes the use of complementary devices such as crowbars unnecessary, as it greatly reduces the value of currents originated by the fault. This ensures less costly designs for the rotor systems as well as a more economic sizing of the necessary power electronics. The strategy described here uses an electric generator model based on space-phasor theory that provides a direct control over the position of the rotor magnetic flux. Controlling the rotor magnetic flux has a direct influence on the rest of the electrical variables enabling the machine to evolve to a desired work point during the transient imposed by the grid disturbance. Simulation studies have been carried out, as well as test bench trials, in order to prove the viability and functionality of the proposed control strategy

    Computer-Based Simulation and Scaled Laboratory Bench System for the Teaching and Training of Engineers on the Control of Doubly Fed Induction Wind Generators

    Get PDF
    Among the existing renewable sources, wind energy is reaching production rates that are becoming important on the worldwide energy scene. Since the control of these wind generators is a very technical discipline, practical teaching methodologies are of special relevance. Paradoxically, in the past, the training of engineers specializing in this area has lacked the practical component represented by field tests, due to the difficulty of access to this kind of installation. This paper presents a system designed for use both in teaching and training procedures for control strategies for wind generators with doubly fed induction generator (DFIG) technology. The system includes two phases or levels of use: the first being a simulation phase based on computer models, and the second, an advanced level which allows for the conducting of tests on a laboratory scaled workbench composed of a wind turbine emulator coupled to an electric generator. With this equipment, the effectiveness of the wind generator regulation systems can be analyzed from the point of view of the maximum power point tracking control strategy, as well as from that of the contribution produced by the wind generator to the control of the operation of the electric grid to which it is connected

    A Novel Education Proposal: Devising an Electric Power System

    Full text link
    The study of electric power systems within the field of Electrical Engineering is usually approached by computer simulation because any actual test is quite complex to be implemented, especially with renewable energies. Having the aim to improve student learning about this topic, a new subject called “Devising an Electric Power System” was organized following a CDIO (Conceive-Design-Implement-Operate) approach. The subject is programmed for one academic year and based entirely on laboratory work. The students are divided into three teams. Every team would have to work on a power system that includes a solar PV generator and a pumping controlled drive, both connected to a three–phase grid. The third and last part of the subject is focused on “electric utility” business strategy. In the final day of the course a competition between the three teams takes place

    Devising an Electric Power System: A CDIO Approach Applied to Electrical Engineering

    Get PDF
    The study of electric power systems within the field of Electrical Engineering is usually approached by computer simulations because any actual test is quite complex to be implemented. Having the aim to improve student learning about this topic, a new subject called “Devising an Electric Power System” was organized following a CDIO (Conceive-Design- Implement-Operate) approach. The subject is programmed for one academic year and based entirely on laboratory work. The students are divided into three groups. Every group would have to work on a device that includes a solar PV generator and a pumping controlled drive, both connected to a three–phase grid. The process followed by the students along the academic year begins with a short theoretical introduction and simulation studies where they conceive and design control strategies. These control strategies are for the solar PV generator (i.e., programing the “Maximum Power Point Tracking” MPPT) as well as for the pumping electric drive (i.e., following a V/f strategy or a vector control). The process is continued by practical implementation of the simulated algorithms previously obtained. In this step, the students implement and operate the systems until they become robust and well adjusted, and ready for the intermediate partial competition among the three groups. During this practical implementation stage, the innovative competence is better enhanced. At the moment that each group has implemented an electric generator and an electric consumption (load), they follow the third and last part of the subject that is focused on “electric utility” business strategy. The students will have to comply with the rules of the electricity market by offering energy packages to be generated and consumed at a certain price. The price and volume of energy to be generated/consumed are determined by the convergence point of supply and demand, as determined by the marginal pricing model. Once the market is cleared, the students have to realize their generation/consumption commitments by operating the real power system they have conceived and implemented. After the first academic year of this subject, the students’ evaluation was highly acceptable. The specific technological contents of the subject were learnt by the method called “learning by doing” that allows students to improve their skills in team building, innovation and communications. In addition, a good work atmosphere among students and teachers has arisen

    ECMO for COVID-19 patients in Europe and Israel

    Get PDF
    Since March 15th, 2020, 177 centres from Europe and Israel have joined the study, routinely reporting on the ECMO support they provide to COVID-19 patients. The mean annual number of cases treated with ECMO in the participating centres before the pandemic (2019) was 55. The number of COVID-19 patients has increased rapidly each week reaching 1531 treated patients as of September 14th. The greatest number of cases has been reported from France (n = 385), UK (n = 193), Germany (n = 176), Spain (n = 166), and Italy (n = 136) .The mean age of treated patients was 52.6 years (range 16–80), 79% were male. The ECMO configuration used was VV in 91% of cases, VA in 5% and other in 4%. The mean PaO2 before ECMO implantation was 65 mmHg. The mean duration of ECMO support thus far has been 18 days and the mean ICU length of stay of these patients was 33 days. As of the 14th September, overall 841 patients have been weaned from ECMO support, 601 died during ECMO support, 71 died after withdrawal of ECMO, 79 are still receiving ECMO support and for 10 patients status n.a. . Our preliminary data suggest that patients placed on ECMO with severe refractory respiratory or cardiac failure secondary to COVID-19 have a reasonable (55%) chance of survival. Further extensive data analysis is expected to provide invaluable information on the demographics, severity of illness, indications and different ECMO management strategies in these patients
    corecore